We are trying to evaluate intsqrt(x^2-1) dx.
Firstly, we should let x=secu
Then our integrand becomes sqrt(sec^2u-1)=tanu and
dx/(du)=secutanu rArrdx=secutanu du
intsqrt(x^2-1) dx=intsecutan^2u du=
intsecu(sec^2u-1) du=intsec^3u-secu du=
intsec^3u du-intsecu du
The integral of secu is a standard and is evaluated as ln|secu+tanu|+"C".
The integral of sec^3u will require integration by parts. If you wish to know how to do it, I will add it later. If you already do, just follow the working.
intsec^3u=1/2secutanu+1/2ln|secu+tanu|+"C"
intsec^3u du-intsecu du=
1/2secutanu+1/2ln|secu+tanu|+"C"-ln|secu+tanu|+"C"
=1/2secutanu-1/2ln|secu+tanu|+"c"
Now all that's left is to rewrite the answer in terms of x.
1/2secutanu-1/2ln|secu+tanu|+"c"=
1/2xsqrt(x^2-1)-1/2ln|x+sqrt(x^2-1)|+"c"
How to evaluate intsec^3u du:
intsec^3u du=intsec^2usecu du
f(x)=secu rArr f'(x)=secutanu
g'(x)=sec^2u rArr g(x)=tanu
intsec^2usecu du=secutanu-intsecutan^2u du=
secutanu-intsecu(sec^2u-1) du=
secutanu-(intsec^3u du-intsecu du)=
intsec^3u du=secutanu-intsec^3u du+intsecu du
2intsec^3u du=secutanu+ln|secu+tanu|
intsec^3u du=1/2(secutanu+ln|secu+tanu|)+"C"