How do you find the antiderivative of int sqrt(x^2-1) dx?

2 Answers
Mar 5, 2017

= 1/2 x sqrt(x^2 - 1) - 1/2 cosh^(-1) (x) + C

Explanation:

When you say you want the "anti-derivative" of int sqrt(x^2-1) dx, I am assuming you mean you want the "anti-derivative" that is int sqrt(x^2-1) dx.

Otherwise you are looking for: int ( int sqrt(x^2-1) dx) \ dx.

For int sqrt(x^2-1) \ dx, there is a convenient hyperbolic relationship:

cosh^2 z - sin^2 z = 1

If we let x = cosh z, dx = sinh z \ dz , we get this:

int sqrt(cosh^2 z -1) sinh z \ dz

int sqrt(sinh^2 z) sinh z \ dz

= int sinh^2 z \ dz

By the hyperbolic double angle formula (cosh 2z = 1 + 2 sinh^2 z):

=1/2 int cosh 2z - 1\ dz

=1/2 ( 1/2 sinh 2z - z) + C = 1/4 sinh 2z - 1/2 z + C qquad triangle

Now:

sinh 2z = 2 sinh z cosh z =

= 2 sqrt(x^2 - 1) * x

So triangle becomes:

= 1/2 x sqrt(x^2 - 1) - 1/2 cosh^(-1) (x) + C

NB

If you like we can take cosh^(-1) (x) and move it from hyperbolic to natural log status:

let y = cosh^(-1) (x)

x = cosh y

= (e^y + e^(-y))/2

implies x = (e^y + e^(-y))/2

implies 2 x e^ y = e^(2y) + 1

implies (e^(y))^2 - 2 x e^ y + 1 = 0

From the quadratic formula:

e^y = (2x pm sqrt(4x^2 - 4 ))/(2) = x pm sqrt(x^2 - 1 )

implies y = ln ( x pm sqrt(x^2 - 1 ))

So triangle becomes:

= 1/2 x sqrt(x^2 - 1) - 1/2 ln ( x pm sqrt(x^2 - 1 )) + C

Mar 5, 2017

intsqrt(x^2-1) dx=1/2(xsqrt(x^2-1)-ln|x+sqrt(x^2-1)|)+"c"

Explanation:

We are trying to evaluate intsqrt(x^2-1) dx.

Firstly, we should let x=secu

Then our integrand becomes sqrt(sec^2u-1)=tanu and

dx/(du)=secutanu rArrdx=secutanu du

intsqrt(x^2-1) dx=intsecutan^2u du=
intsecu(sec^2u-1) du=intsec^3u-secu du=
intsec^3u du-intsecu du

The integral of secu is a standard and is evaluated as ln|secu+tanu|+"C".

The integral of sec^3u will require integration by parts. If you wish to know how to do it, I will add it later. If you already do, just follow the working.

intsec^3u=1/2secutanu+1/2ln|secu+tanu|+"C"

intsec^3u du-intsecu du=
1/2secutanu+1/2ln|secu+tanu|+"C"-ln|secu+tanu|+"C"
=1/2secutanu-1/2ln|secu+tanu|+"c"

Now all that's left is to rewrite the answer in terms of x.

1/2secutanu-1/2ln|secu+tanu|+"c"=

1/2xsqrt(x^2-1)-1/2ln|x+sqrt(x^2-1)|+"c"

How to evaluate intsec^3u du:

intsec^3u du=intsec^2usecu du

f(x)=secu rArr f'(x)=secutanu
g'(x)=sec^2u rArr g(x)=tanu

intsec^2usecu du=secutanu-intsecutan^2u du=
secutanu-intsecu(sec^2u-1) du=
secutanu-(intsec^3u du-intsecu du)=

intsec^3u du=secutanu-intsec^3u du+intsecu du

2intsec^3u du=secutanu+ln|secu+tanu|

intsec^3u du=1/2(secutanu+ln|secu+tanu|)+"C"