How do you find the antiderivative of int x^2/sqrt(4-x^2)dx?

1 Answer
Feb 22, 2017

2arc sin(x/2)-x/2sqrt(4-x^2)+C.

Explanation:

We know that,

(1) : intsqrt(a^2-x^2)dx=x/2sqrt(a^2-x^2)+a^2/2arc sin(x/a)+c_1.

(2) : int1/sqrt(a^2-x^2)dx=arc sin(x/a)+c_2.

Hence, I=intx^2/sqrt(4-x^2)dx

=-int(-x^2)/sqrt(4-x^2)dx=-int{(4-x^2)-4}/sqrt(4-x^2)dx,

=-int(4-x^2)/sqrt(4-x^2)dx+4int1/sqrt(4-x^2)dx,

=-intsqrt(4-x^2)dx+4arc sin(x/2),............[because, (2)]

=-{x/2sqrt(4-x^2)+4/2arc sin(x/2)}+4arc sin (x/2),

=2arc sin(x/2)-x/2sqrt(4-x^2)+C.

Enjoy Maths.!