How do you find the antiderivative of int x^2/sqrt(4-x^2)dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Ratnaker Mehta Feb 22, 2017 2arc sin(x/2)-x/2sqrt(4-x^2)+C. Explanation: We know that, (1) : intsqrt(a^2-x^2)dx=x/2sqrt(a^2-x^2)+a^2/2arc sin(x/a)+c_1. (2) : int1/sqrt(a^2-x^2)dx=arc sin(x/a)+c_2. Hence, I=intx^2/sqrt(4-x^2)dx =-int(-x^2)/sqrt(4-x^2)dx=-int{(4-x^2)-4}/sqrt(4-x^2)dx, =-int(4-x^2)/sqrt(4-x^2)dx+4int1/sqrt(4-x^2)dx, =-intsqrt(4-x^2)dx+4arc sin(x/2),............[because, (2)] =-{x/2sqrt(4-x^2)+4/2arc sin(x/2)}+4arc sin (x/2), =2arc sin(x/2)-x/2sqrt(4-x^2)+C. Enjoy Maths.! Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1570 views around the world You can reuse this answer Creative Commons License