How do you find the antiderivative of int x^2sqrt(1-x^2) dx?

1 Answer
Feb 27, 2017

1/8sin^-1(x)+1/8x(2x^2-1)sqrt(1-x^2)+C

Explanation:

I=intx^2sqrt(1-x^2)dx

Let x=sin(theta). This implies that dx=cos(theta)d theta. Then:

I=intsin^2(theta)sqrt(1-sin^2(theta))(cos(theta)d theta)

I=intsin^2(theta)cos^2(theta)d theta

Now let cos^2(theta)=1-sin^2(theta):

I=intsin^2(theta)(1-sin^2(theta))d theta

I=intsin^2(theta)d theta-intsin^4(theta)d theta

Now use the identity sin^2(alpha)=1/2(1-cos(2alpha)):

I=1/2int(1-cos(2theta))d theta-int(1/2(1-cos(2theta)))^2d theta

I=1/2intd theta-1/2intcos(2theta)d theta-1/4int(1-2cos(2theta)+cos^2(2theta))d theta

Use the identity cos^2(alpha)=1/2(1+cos(2alpha)):

I=1/2intd theta-1/2intcos(2theta)d theta-1/4intd theta+1/2intcos(2theta)d theta-1/8int(1+cos(4theta))d theta

I=1/4intd theta-1/8intd theta-1/8intcos(4theta)d theta

Solving through a substitution:

I=1/8theta-1/32sin(4theta)

We now have to return to x from theta. Recall that x=sin(theta). Thus theta=sin^-1(x). Also, use the identity sin(2alpha)=2sin(alpha)cos(alpha) to break down sin(4theta):

I=1/8sin^-1(x)-1/16sin(2theta)cos(2theta)

Reusing the sine double-angle identity and also applying cos(2alpha)=1-2sin^2(alpha):

I=1/8sin^-1(x)-1/8sin(theta)cos(theta)(1-2sin^2(theta))

Flipping the order of the terms in the last parenthesis with the preceding negative sign and using cos(x)=sqrt(1-sin^2(x)):

I=1/8sin^-1(x)+1/8sin(theta)sqrt(1-sin^2(theta))(2sin^2(theta)-1)

Finally using x=sin(theta):

I=1/8sin^-1(x)+1/8x(2x^2-1)sqrt(1-x^2)+C