How do you find the antiderivative of int x^3/sqrt(4x^2-1)dx?

1 Answer
Nov 5, 2016

((2x^2+1)sqrt(4x^2-1))/24+C

Explanation:

I=intx^3/sqrt(4x^2-1)dx

Let u=4x^2-1 so that du=8xdx. Also note that x^2=(u+1)/4, which will be useful in a second:

I=1/8int(x^2(8x))/sqrt(4x^2-1)dx

Substituting in our 8xdx and x^2 terms we have:

I=1/8int((u+1)/4)/sqrtudu=1/32int(u+1)/sqrtudu

I=1/32int(u^(1/2)+u^(-1/2))du

Now integrating using the power rule for integration:

I=1/32(u^(3/2)/(3/2)+u^(1/2)/(1/2))=1/32(2/3u^(3/2)+2u^(1/2))

I=1/48u^(3/2)+1/16u^(1/2)=(u^(3/2)+3u^(1/2))/48=(u^(1/2)(u+3))/48

Now since u=4x^2-1:

I=(sqrt(4x^2-1)(4x^2-1+3))/48=(sqrt(4x^2-1)(4x^2+2))/48

So:

I=(sqrt(4x^2-1)(2x^2+1))/24+C