How do you find the antiderivative of tan^2(x) dx

2 Answers
Feb 19, 2015

You can start by writing tan^2(x)=sin^2(x)/cos^2(x) giving:
inttan^2(x)dx=intsin^2(x)/cos^2(x)dx=

using: sin^2(x)=1-cos^2(x) you get:

=int(1-cos^2(x))/(cos^2(x))dx=int[1/cos^2(x)-1]dx=
=int1/cos^2(x)dx-int1dx=

=tan(x)-x+c

Feb 19, 2015

The answer is: tanx-x+c.

Remembering that the derivative of y=tanx is y'=1+tan^2x,

Than:

inttan^2xdx=int(tan^2x+1-1)dx=

=int(tan^2x+1)dx-intdx=tanx-x+c.