How do you find the antiderivative of x^2 e^(2x)x2e2x?

1 Answer

1/2e^(2x)(x^2 - x + 1/2) + C12e2x(x2x+12)+C

Explanation:

Well, This can't be done simply.

We have to Perform Integration By Parts.

The Rule States That,

int uvdx = uintvdx - int (u'intv)dx

Where u and v are functions of x and u' = d/dx(u).

Now, We have,

intx^2e^(2x)dx

= x^2inte^2x - int(d/dx(x^2)inte^(2x))dx

= 1/2x^2e^(2x) - int(cancel(2)x xx 1/cancel(2)e^(2x))dx

= 1/2x^2e^(2x) - int xe^(2x) dx......................(i)

We have to Integrate By Parts Once More.

So, From (i),

1/2x^2e^(2x) - x inte^(2x) + int(d/dx(x)inte^(2x))dx

= 1/2x^2e^(2x) - 1/2xe^(2x) + 1/2inte^(2x)dx

= 1/2x^2e^(2x) - 1/2xe^(2x) + 1/4e^(2x) + C [Yeah, Don't EVER Forget this guy hererarr C]

= 1/2e^(2x)(x^2 - x + 1/2) + C

Hope this helps.