How do you find the antiderivative of x^2*e^(2x)x2e2x?

1 Answer
Jan 23, 2017

= 1/2 e^(2x) (x^2 - x + 1/2 ) + C=12e2x(x2x+12)+C

Explanation:

Use Integration by parts

int x^2 e^(2x) dx = int x^2 (1/2 e^(2x))^prime dx

= 1/2 x^2 e^(2x) - int (x^2)^prime * 1/2 e^(2x) dx

= 1/2 x^2 e^(2x) - int x e^(2x) dx

= 1/2 x^2 e^(2x) - int x (1/2 e^(2x))^prime dx

= 1/2 x^2 e^(2x) - ( 1/2 x e^(2x) - int (x)^prime * 1/2 e^(2x) dx )

= 1/2 x^2 e^(2x) - 1/2 x e^(2x) + int 1/2 e^(2x) dx

= 1/2 x^2 e^(2x) - 1/2 x e^(2x) + 1/4 e^(2x) + C

= 1/2 e^(2x) (x^2 - x + 1/2 ) + C