How do you find the derivative of cscx?

1 Answer
Dec 17, 2016

(dy)/(dx)=-cotxcscx

Explanation:

Rewrite ""cscx"" in terms of ""sinx"" and use the quotient rule

quotient rule " "y=u/v=>(dy)/(dx)=(vu'-uv')/v^2

y=cscx=1/sinx

u=1=>u'=0

v=sinx=>v'=cosx

(dy)/(dx)=((sinx xx0)-(1xxcosx))/(sinx)^2

(dy)/(dx)=(0-cosx)/(sinx)^2

(dy)/(dx)=-cosx/(sinxsinx)=-cosx/sinx xx 1/sinx

(dy)/(dx)=-cotxcscx