How do you find the derivative of f(x)=csc(3x-1)f(x)=csc(3x1)?

1 Answer
Oct 20, 2016

f'(x)=3cos(3x-1)csc^2(3x-1)

Explanation:

f(x) is a xomposite of two functions
Let :
color(blue)(g(x)=3x-1) and color(brown)(h(x)=cscx
So,
f(x)=color(brown)hcolor(blue)((g(x))
so thederivative of this function is by applying chain rule:

color(red)(f'(x))=color(red)(h'(g(x)*(g'(x))

color(red)h'(g(x))=????

color(brown)(h(x)=cscx
h'(x)=cosx*csc^2x
color(red)h'(g(x))=cos(g(x))*csc^2(g(x))=cos(3x-1)*csc^2(3x-1)

color(red)(h'(g(x))) = cos(3x-1)*csc^2(3x-1)

color(red)(g'(x))=????

color(blue)(g(x)=3x-1)
color(red)(g'(x))=3

color(red)(f'(x))=color(red)(h'(g(x)*(g'(x))
color(red)(f'(x))=cos(3x-1)*csc^2(3x-1)*3

color(red)(f'(x)=3cos(3x-1)csc^2(3x-1))