How do you find the derivative of g(x)=2csc^8(4x)?

1 Answer
Dec 20, 2017

dy/dx=-64cot(4x)csc^8(4x)

Explanation:

Chain rule:
y=2u^8
u=csc(v)
v=4x

dy/dx=dy/(du)*(du)/(dv)*(dv)/(dx)

dy/dx=(16u^7)*(-csc(v)cot(v))*(4)

Now we replace every v with 4x and every u with csc(v)\rightarrow csc(4x):

dy/dx=(16csc(4x)^7)*(-csc(4x)cot(4x))*(4)

and rearrange:

dy/dx=-64csc(4x)cot(4x)csc^7(4x)

and one more thing to clean up:

dy/dx=-64cot(4x)csc^8(4x)