How do you find the derivative of #q(r)=r^3cosr#?
1 Answer
Jan 15, 2017
Explanation:
differentiate using the
#color(blue)"product rule"#
#"Given " q(r)=f(r).g(r)" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(q'(r)=f(r)g'(r)+g(r)f'(r))color(white)(2/2)|)))larr" product rule"#
#"here " f(r)=r^3rArrf'(r)=3r^2#
#"and " g(r)=cosrrArrg'(r)=-sinr#
#rArrq'(r)=r^3(-sinr)+cosr.3r^2#
#=3r^2cosr-r^3sinr#