How do you find the derivative of x(t)=4tan^4(2t)?

1 Answer
Oct 25, 2016

The derivativeis x'(t)=32tan^3(2t).sec^2(2t)

Explanation:

We do a chain derivation
x'(t)=(4tan^4(2t))'=4(4tan^3(2t)).tan(2t)'
using the following

(x^n)'=nx^(n-1)
(tanx)'=sec^2x
(ax)'=a

So x'(t)=16tan^3(2t).tan(2t)'

=16tan^3(2t).sec^2(2t).(2t)'

=16tan^3(2t).sec^2(2t).2

=32tan^3(2t).sec^2(2t).