How do you find the derivative of y=10tan(20x)?

1 Answer
Jul 2, 2016

dy/dx=200sec^2(20)x

Explanation:

First we need to find the derivative of Tan ax where a is constant
y = tanax
dy/dx=d/dx((sinax)/(cosax))
applying u/v rule
where u=sinax,v=cosax
dy/dx=(1/(cos^2ax))(cosax(d/dx(sinax))-sinax(d/dx(cosax))
dy/dx=(1/(cos^2ax))*(cosax*acosx)-sinax*(-asinax))
dy/dx=a(sin^2ax+cos^2ax)/(cos^2ax)=a/(cos^2ax)
dy/dx=asec^2ax
so as in the problem y = 10 tan 20x
the answer is dy/dx=10*20*sec^2(10x)=200sec^2(20x)