How do you find the derivative of y = cosx(cotx)y=cosx(cotx)?

1 Answer
Jul 20, 2016

(dy)/(dx) = cosx(-csc^2x-1)dydx=cosx(csc2x1)

Explanation:

We have to use the product rule.

d/(dx)(uv) = u(dv)/(dx) + (du)/(dx)vddx(uv)=udvdx+dudxv

(dy)/(dx) = cosx(d/(dx)(cotx)) + d/(dx)(cosx)cotxdydx=cosx(ddx(cotx))+ddx(cosx)cotx

= -cosxcsc^2x - sinxcotx=cosxcsc2xsinxcotx

Remember that cotx = 1/tanx = cosx/sinxcotx=1tanx=cosxsinx

therefore (dy)/(dx) = =-cosxcsc^2x - cosx