How do you find the derivative of y = cotx(cscx)y=cotx(cscx)?

1 Answer
Aug 3, 2016

(dy)/(dx)=-cscx(csc^2x+cot^2x)dydx=cscx(csc2x+cot2x)

Explanation:

Product rule states if f(x)=g(x)h(x)f(x)=g(x)h(x)

then (df)/(dx)=(dg)/(dx)xxh(x)+(dh)/(dx)xxg(x)dfdx=dgdx×h(x)+dhdx×g(x)

Hence as y=cotx(cscx)y=cotx(cscx)

(dy)/(dx)=d/(dx)(cotx)xxcscx+d/(dx)(cscx)xxcotxdydx=ddx(cotx)×cscx+ddx(cscx)×cotx

= (-csc^2x)xxcscx+(-cscxcotx)xxcotx(csc2x)×cscx+(cscxcotx)×cotx

= -csc^2x xxcscx-cscxxxcot^2xcsc2x×cscxcsc×xcot2x

= -cscx(csc^2x+cot^2x)cscx(csc2x+cot2x)