How do you find the derivative of #y = csc^3(2x) #?

1 Answer
Jun 23, 2018

#dy/dx=-6csc^3(2x)cot(2x)#

Explanation:

#"differentiate using the "color(blue)"chain rule"#

#"given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#y=csc^3(2x)=(csc(2x))^3#

#dy/dx=3(csc(2x))^2xxd/dx(csc(2x))#

#color(white)(dy/dx)=3csc^2(2x)xx-csc(2x)cot(2x)xxd/dx(2x)#

#color(white)(dy/dx)=-6csc^3(2x)cot(2x)#