How do you find the derivative of y=tan(3x)?

1 Answer
Apr 14, 2018

(dy)/(dx)=3sec^2 3x

Explanation:

we use teh chain rule

(dy)/(dx)=color(red)((dy)/(du))(du)/(dx)

y=tan3x

u=3x=>(du)/(dx)=3

:color(red)(y=tanu=>(dy)/(du)=sec^2u)

(dy)/(dx)=color(red)(sec^2u)xx3

(dy)/(dx)=3sec^2u=3sec^2 3x