How do you find the derivative of y=x^5/(4sinx)?

1 Answer
Apr 8, 2018

dy/dx=(x^4(5sinx-xcosx))/(4sin^2x)

Explanation:

"differentiate using the "color(blue)"quotient rule"

"Given "y=(g(x))/(h(x))" then"

dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"

g(x)=x^5rArrg'(x)=5x^4

h(x)=4sinxrArrh'(x)=4cosx

rArrdy/dx=(20x^4sinx-4x^5cosx)/(4sinx)^2

color(white)(rArrdy/dx)=(4x^4(5sinx-xcosx))/(16sin^2x)

color(white)(rArrdy/dx)=(x^4(5sinx-xcosx))/(4sin^2x)