How do you find the exact value cos(x+y) if tanx=5/3,siny=1/3?

1 Answer
Jan 17, 2017

cos(x+y)=(6sqrt2-5)/(3sqrt34)

Explanation:

Use the cosine angle addition formula:

cos(x+y)=cosxcosy-sinxsiny

We need to determine sinx, cosx, and cosy from whatever we have.

Determining mathbf(sinx,cosx: )

tan^2x+1=sec^2x" "" "" "use tanx=5/3

25/9+1=sec^2x

secx=sqrt(34/9)=sqrt34/3

Then:

color(blue)(cosx=1/secx=3/sqrt34

Now using:

sin^2x+cos^2x=1" "" "" "where cosx=3/sqrt34

sin^2x+9/34=1

color(blue)(sinx=sqrt(25/34)=5/sqrt34

Determining mathbf(cosy: )

sin^2y+cos^2y=1" "" "" "use siny=1/3

1/9+cos^2y=1

color(blue)(cosy=sqrt(8/9)=(2sqrt2)/3

Returning to mathbf(cos(x+y): )

cos(x+y)=cosxcosy-sinxsiny

color(white)(cos(x+y))=3/sqrt34((2sqrt2)/3)-5/sqrt34(1/3)

color(white)(cos(x+y))=(6sqrt2-5)/(3sqrt34)

Note these are all assuming that x and y are in the first quadrant (everything is positive).