How do you find the exact value cos(x+y) if tanx=5/3,siny=1/3?
1 Answer
Explanation:
Use the cosine angle addition formula:
cos(x+y)=cosxcosy-sinxsiny
We need to determine
Determining
tan^2x+1=sec^2x" "" "" " usetanx=5/3
25/9+1=sec^2x
secx=sqrt(34/9)=sqrt34/3
Then:
color(blue)(cosx=1/secx=3/sqrt34
Now using:
sin^2x+cos^2x=1" "" "" " wherecosx=3/sqrt34
sin^2x+9/34=1
color(blue)(sinx=sqrt(25/34)=5/sqrt34
Determining
sin^2y+cos^2y=1" "" "" " usesiny=1/3
1/9+cos^2y=1
color(blue)(cosy=sqrt(8/9)=(2sqrt2)/3
Returning to
cos(x+y)=cosxcosy-sinxsiny
color(white)(cos(x+y))=3/sqrt34((2sqrt2)/3)-5/sqrt34(1/3)
color(white)(cos(x+y))=(6sqrt2-5)/(3sqrt34)
Note these are all assuming that