How do you find the exact value of cos54?

1 Answer
Jun 24, 2016

cos54^o=sqrt(10-2sqrt5)/4

Explanation:

cos54^o=cos(90^o-36^o)=sin36^o

Let A=36^o hence 5A=180^o

or 3A=180^o-2A and hence

sin3A=sin(180^o-2A)=sin2A and expanding it we get

3sinA-4sin^3A=2sinAcosA

as sinA!=0, dividing by sinA, we get

3-4sin^2A=2cosA or

3-4(1-cos^2A)-2cosA=0 or

4cos^2A-2cosA-1=0

and cosA=(2+-sqrt(2^2-4*4*(-1)))/(2*4)=(2+-sqrt20)/8=(1+-sqrt5)/4

As cosA cannot be negative, cosA=(1+sqrt5)/4 and

sinA=sqrt(1-(1+sqrt5)^2/16)=sqrt((16-(6+2sqrt5))/16)

= sqrt((10-2sqrt5)/16)=sqrt(10-2sqrt5)/4

Hence cos54^o=sqrt(10-2sqrt5)/4