cos54^o=cos(90^o-36^o)=sin36^o
Let A=36^o hence 5A=180^o
or 3A=180^o-2A and hence
sin3A=sin(180^o-2A)=sin2A and expanding it we get
3sinA-4sin^3A=2sinAcosA
as sinA!=0, dividing by sinA, we get
3-4sin^2A=2cosA or
3-4(1-cos^2A)-2cosA=0 or
4cos^2A-2cosA-1=0
and cosA=(2+-sqrt(2^2-4*4*(-1)))/(2*4)=(2+-sqrt20)/8=(1+-sqrt5)/4
As cosA cannot be negative, cosA=(1+sqrt5)/4 and
sinA=sqrt(1-(1+sqrt5)^2/16)=sqrt((16-(6+2sqrt5))/16)
= sqrt((10-2sqrt5)/16)=sqrt(10-2sqrt5)/4
Hence cos54^o=sqrt(10-2sqrt5)/4