How do you find the exact value of sin(135^circ-30^circ)?

1 Answer

sin(135-30)=(sqrt3+1)/(2sqrt2)

Explanation:

sin(a-b)=sinacosb-sinbcosa

sin30=1/2

cos30=sqrt3/2

sin(135-30)=sin135cos30-cos135sin30=sqrt(3)/2sin135-1/2cos135

as sin135=sin(180-45)=sin45=1/sqrt2

and cos135=cos(180-45)=-cos45=-1/sqrt2

Hence sin(135-30)=sqrt3/2xx1/sqrt2-1/2xx-(-1/sqrt2)=(sqrt3+1)/(2sqrt2)