How do you find the exact value of sin((7pi)/6)-sin(pi/3) ?

1 Answer
Apr 2, 2017

Use trigonometric identities

Explanation:

Use that
sin(x + pi) = -sin(x)
to learn that
sin((7pi)/6) - sin(pi/3) = sin(pi + pi/6) - sin(pi/3) = -sin(pi/6) - sin(pi/3).

Now look up in tables, or derive from the unit circle that
sin(pi/6) = 1/2
and
sin(pi/3) = sqrt(3)/2,
such that
sin((7pi)/6) - sin(pi/3) = -sin(pi/6) - sin(pi/3) = -1/2 - sqrt(3)/2 = (-1-sqrt(3))/2,

which is an exact value for the trigonometric expression.