How do you find the exact value of sin(v-u) given that sinu=5/13 and cosv=-3/5?

1 Answer
Nov 28, 2017

sin(v-u) = -33/65

Explanation:

Given sin u = 5/13
13^2 = 5^2 + 12^2
In effect it’s a right angle triangle with sides 5, 12, 13.
:. cos u = 12/13

Given cos v = -3/5
5^2 = 3^2 + 4^2
In effect it’s a right angle triangle with sides 3, 4, 5.
:. sin v = -4/5 in the third quadrant where cos and sin are negative.

sin (v-u) = (sin v * cos u )- (cos v * sin u)

sin (v-u) = ((-4/5)(12/13)) - ((-3/5)(5/13))

sin(v-u) = (-48/65 )+ (15/65) = -33/65