How do you find the exact value of sin7.5?

1 Answer
May 16, 2015

Use some half angle formulas:

sin(theta/2) = +-sqrt((1-cos theta) / 2)

cos(theta/2) = +-sqrt((1+cos theta) / 2)

Also use a known value cos 30^o = sqrt(3)/2

If we stick to the first quadrant, we can take the sign of the square root to be + in both cases.

cos 15^o = sqrt((1+cos 30^o)/2)

= sqrt((1+sqrt(3)/2)/2)

= sqrt((2+sqrt(3))/4)

= sqrt(2+sqrt(3))/2

sin 7.5^o = sqrt((1-cos 15^o)/2)

= sqrt((1-sqrt(2+sqrt(3))/2)/2)

= sqrt((2-sqrt(2+sqrt(3)))/4)

= sqrt(2-sqrt(2+sqrt(3)))/2