How do you find the exact value sec(x-y) if cscx=5/3,tany=12/5?

2 Answers
Nov 30, 2016

The answer is =-65/16

Explanation:

sec(x-y)=1/cos(x-y)=1/(cosxcosy-sinxsiny)

cscx=1/sinx=5/3

Therefore, sinx=3/5

cos^2x+sin^2x=1

cos^2x=1-9/25=16/25

cosx=4/5

tany=12/5

tan^2y+1=1/cos^2y

1/cos^2y=1+144/25=169/25

cosy=5/13

sin^2y=1-cos^2y=1-25/169=144/169

siny=12/13

sec(x-y)=1/(cosxcosy-sinxsiny)

=1/(4/5*5/13-3/5*12/13)

=1/(4/13-36/65)

=-65/16

Nov 30, 2016

sec(x-y)=65/56 if x,y in (0.pi/2)

Explanation:

sec(x-y) =1/cos(x-y)= 1/(cosxcosy+sinxsiny)

cscx =1/sinx=5/3 => sinx = 3/5

cosx =+-sqrt(1-(3/5)^2) = +-sqrt(1-9/25) =+- sqrt(16/25) =+-4/5

tany=12/5 => sin^2y/(1-sin^2y) = (12/5)^2

25sin^2y+144sin^2y-144 =0

169sin^2y=144

siny=+-12/13

cosy=sqrt(1-(12/13)^2)=+-5/13

As the tangent is positive, siny and cosy have the same sign.

For the sake of simplicity let's assume x and y are in (0,pi/2)
so we take all the positive solutions:

sinx=3/5
cosx=4/5
siny=12/13
cosy=5/13

sec(x-y) == 1/(4/5*5/13+3/5*12/13)=1/(20/65+36/65)=65/56

Alternatively, x could be in the second quadrant, where:

cosx=-4/5

or y could be in the third quadrant where:
siny=-12/13
cosy=-5/13