How do you find the exact value sin(x+y)sin(x+y) if cosx=8/17, siny=12/37cosx=817,siny=1237?

2 Answers
Nov 22, 2016

The exact value is =621/629=621629

Explanation:

We know that

sin(x+y)=sinxcosy+sinycosxsin(x+y)=sinxcosy+sinycosx

If cosx=8/17cosx=817 and siny=12/37siny=1237

We can use, cos^2x+sin^2x=1cos2x+sin2x=1

and cos^2y+sin^2y=1cos2y+sin2y=1

To calculate sinxsinx and cosycosy

sin^2x=1-cos^2x=1-(8/17)^2=225/17^2sin2x=1cos2x=1(817)2=225172

sinx=15/17sinx=1517

cos^2y=1-sin^2y=1-(12/37)^2=1225/37^2cos2y=1sin2y=1(1237)2=1225372

cosy=35/37cosy=3537

so,
sin(x+y)=15/17*35/37+12/37*8/17=621/629sin(x+y)=15173537+1237817=621629

Nov 22, 2016

sin(x+y)=621/629sin(x+y)=621629 or -429/629429629 depending on the quadrant in which sine and cosine lie.

Explanation:

Before we commence further, it may be mentioned that as cosx=8/17cosx=817, xx is in Q1Q1 or Q4Q4 i.e. sinxsinx could be positive or negative and as siny=12/37siny=1237, yy is in Q1Q1 or Q2Q2 i.e. cosycosy could be positive or negative.

Hence four combinations for (x+y)(x+y) are there and for sin(x+y)=sinxcosy+cosxsinysin(x+y)=sinxcosy+cosxsiny, there are four possibilities.

Now as cosx=8/17cosx=817, sinx=sqrt(1-(8/17)^2)=sqrt(1-64/289)=sqrt(225/289)=+-15/17sinx=1(817)2=164289=225289=±1517 and

as siny=12/37siny=1237, cosy=sqrt(1-(12/37)^2)=sqrt(1-144/1369)=sqrt(1225/1369)=+-35/37cosy=1(1237)2=11441369=12251369=±3537

Hence,

(1) when xx and yy are in Q1Q1

sin(x+y)=15/17xx35/37+8/17xx12/37=(525+96)/629=621/629sin(x+y)=1517×3537+817×1237=525+96629=621629

(2) when xx is in Q1Q1 and yy is in Q2Q2

sin(x+y)=15/17xx(-35)/37+8/17xx12/37=(-525+96)/629=-429/629sin(x+y)=1517×3537+817×1237=525+96629=429629

(3) when xx is in Q4Q4 and yy is in Q2Q2

sin(x+y)=(-15)/17xx(-35)/37+8/17xx12/37=(525+96)/629=621/629sin(x+y)=1517×3537+817×1237=525+96629=621629

(4) when xx is in Q4Q4 and yy is in Q1Q1

sin(x+y)=(-15)/17xx35/37+8/17xx12/37=(-525+96)/629=-429/629sin(x+y)=1517×3537+817×1237=525+96629=429629

Hence, sin(x+y)=621/629sin(x+y)=621629 or -429/629429629