How do you find the exact value sin(x-y) if sinx=4/9, siny=1/4?

1 Answer
Dec 29, 2016

The answer is =(4sqrt15-sqrt65)/36=0.21

Explanation:

We need

sin(A-B)=sinAcosB-sinBcosA

sin^2A+cos^2A=1

Here, we have

sinx=4/9

cos^2x=1-sin^2x=1-16/81=65/81

cosx=sqrt65/9

siny=1/4

cos^2y=1-sin^2y=1-1/16=15/16

cosy=sqrt15/4

Therefore,

sin(x-y)=sinxcosy-sinycosx

=4/9*sqrt15/4-1/4*sqrt65/9

=sqrt15/9-sqrt65/36

=(4sqrt15-sqrt65)/36=0.21