How do you find the exact value tan(x+y) if cotx=6/5,secy=3/2?

1 Answer
Jul 19, 2017

If y is in Q1, tan(x+y)=(5+3sqrt5)/(6-5sqrt5) and
if y is in Q4, tan(x+y)=(5-3sqrt5)/(6+5sqrt5)

Explanation:

As cotx=6/5, tanx=1/cotx=1/(6/5)=5/6

and as secy=3/2, tany=+-sqrt((3/2)^2-1)=+-sqrt(9/4-1)=+-sqrt(5/4)=+-sqrt5/2

Observe that tany=sqrt5/2, when y is in Q1 and tany=-sqrt5/2, when y is in Q4.

Hence there canj be two values of tan(x+y)

If y is in Q1, tan(x+y)=(tanx+tany)/(1-tanxtany)=(5/6+sqrt5/2)/(1-5/6xxsqrt5/2)=(5+3sqrt5)/(6-5sqrt5)

If y is in Q4, tan(x+y)=(tanx+tany)/(1-tanxtany)=(5/6-sqrt5/2)/(1+5/6xxsqrt5/2)=(5-3sqrt5)/(6+5sqrt5)