How do you find the exact values of the sine, cosine, and tangent of the angle #15^circ#?

1 Answer
Apr 7, 2017

Working below

Explanation:

FACTS TO KNOW:
#sin(A-B) = sinAcosB-cosAsinB#
#cos(A-B) = cosAcosB+sinAsinB#
#tanx=sinx/cosx#
#sin45=cos45=1/sqrt2#
#sin30=cos60=1/2#
#sin60=cos30=sqrt3/2#

To find #sin15#, we evaluate #sin(45-30)#:
#sin(15)=sin(45-30)#
#=sin45cos30-cos45sin30#
#=1/sqrt2*sqrt3/2-1/sqrt2*1/2#
#=(sqrt3-1)/(2sqrt2)#

To find #cos15#, we evaluate #cos(45-30)#:
#cos(15)=cos(45-30)#
#=cos45cos30+sin45sin30#
#=1/sqrt2*sqrt3/2+1/sqrt2*1/2#
#=(sqrt3+1)/(2sqrt2)#

To find #tan15#, we evaluate #sin15/cos15#
#tan15=sin15/cos15#
#=((sqrt3-1)/(2sqrt2))/((sqrt3+1)/(2sqrt2))#
#=(sqrt3-1)/(sqrt3+1)#

Note that it is possible to simplify further by rationalising the denominator of each.