How do you find the exact values of the sine, cosine, and tangent of the angle 5π12?
1 Answer
Mar 27, 2018
Explanation:
using the trigonometric identities
∙xsin(x+y)=sinxcosy+cosxsiny
∙xcos(x+y)=cosxcosy−sinxsiny
note that 5π12=π4+π6
⇒sin(5π12)=sin(π4+π6)
⇒sin(π4+π6)
=sin(π4)cos(π6)+cos(π4)sin(π6)
=(1√2×√32)+(1√2×12)
=√32√2+12√2
=√3+12√2×√2√2=14(√6+√2)←exact value
cos(5π12)=cos(π4+π6)
⇒cos(π4+π6)
=cos(π4)cos(π6)−sin(π4)sin(π6)
=(1√2×√32)−(1√2×12)
=√3−12√2×√2√2
=14(√6−√2)←exact value
tan(5π12)=sin(5π12)cos(5π12)
×××x=√6+√2√6−√2×√6+√2√6+√2
×××x=6+2√12+24
×××x=8+4√34
×××x=2+√3←exact value