How do you find the exact values of the sine, cosine, and tangent of the angle 5π12?

1 Answer
Mar 27, 2018

see explanation

Explanation:

using the trigonometric identities

xsin(x+y)=sinxcosy+cosxsiny

xcos(x+y)=cosxcosysinxsiny

note that 5π12=π4+π6

sin(5π12)=sin(π4+π6)

sin(π4+π6)

=sin(π4)cos(π6)+cos(π4)sin(π6)

=(12×32)+(12×12)

=322+122

=3+122×22=14(6+2)exact value

cos(5π12)=cos(π4+π6)

cos(π4+π6)

=cos(π4)cos(π6)sin(π4)sin(π6)

=(12×32)(12×12)

=3122×22

=14(62)exact value

tan(5π12)=sin(5π12)cos(5π12)

×××x=6+262×6+26+2

×××x=6+212+24

×××x=8+434

×××x=2+3exact value