How do you find the indefinite integral of int 2^(sinx)cosx2sinxcosx?

1 Answer
Dec 24, 2016

int 2^(sin x) cos x " "dx=2^sinx/ln2+C2sinxcosx dx=2sinxln2+C.

Explanation:

Let u=sinxu=sinx.
Then (du)/dx=cos xdudx=cosx, and thus du = cos x" "dxdu=cosx dx.

Substituting this into the given integral, we get

int 2^(sin x) cos x " "dx=int 2^u" "du2sinxcosx dx=2u du
color(white)(int 2^(sin x) cos x " "dx)=color(navy)(1/(ln 2))int color(navy)(ln 2) * 2^u" "du2sinxcosx dx=1ln2ln22u du
color(white)(int 2^(sin x) cos x " "dx)=1/(ln 2) * 2^u+C2sinxcosx dx=1ln22u+C

And since u = sin xu=sinx, we substitute back:

color(white)(int 2^(sin x) cos x " "dx)=1/(ln 2) * 2^sin x+C2sinxcosx dx=1ln22sinx+C
color(white)(int 2^(sin x) cos x " "dx)=2^sin x/(ln 2)+C2sinxcosx dx=2sinxln2+C

So int 2^(sin x) cos x " "dx=2^sinx/ln2+C2sinxcosx dx=2sinxln2+C.

Check:

Using the chain rule and the exponential rule for derivatives:
d/dx (a^u)=ln a * a^u*(du)/dxddx(au)=lnaaududx

We get

d/dx (2^(sinx)/ln 2 + C)=1/ln 2 * ln 2 * 2^sinx * cos xddx(2sinxln2+C)=1ln2ln22sinxcosx
color(white)(d/dx (2^(sinx)/ln 2))=2^sinx * cos xddx(2sinxln2)=2sinxcosx,

which matches our integrand from above.