How do you find the indefinite integral of int (3^(2x))/(1+3^(2x))32x1+32x?

2 Answers
Jan 7, 2017

int 3^(2x)/(1+3^(2x))dx=1/(2ln3)ln abs(1+3^(2x))+C32x1+32xdx=12ln3ln1+32x+C

Explanation:

Substitute t=3^(2x)=e^(2ln3x)t=32x=e2ln3x, dt= 2ln3*e^(2ln3x)dt=2ln3e2ln3x

int 3^(2x)/(1+3^(2x))dx = 1/(2ln3)int (dt)/(1+t)= 1/(2ln3)ln abs(1+t)+C=1/(2ln3)ln abs(1+3^(2x))+C32x1+32xdx=12ln3dt1+t=12ln3ln|1+t|+C=12ln3ln1+32x+C

Jan 7, 2017

Do a u substitution. Please see the explanation.

Explanation:

int(3^(2x))/(1 + 3^(2x))dx = 32x1+32xdx=

int9^x/(1 + 9^x)dx9x1+9xdx

Let u = 1 + 9^xu=1+9x, then (du)/dx = (d(1))/dx + (d(9^x))/dxdudx=d(1)dx+d(9x)dx

The first term of the derivative is 0 but the second term requires logarithmic differentiation:

let y = 9^xy=9x, then (du)/dx = 0 + dy/dxdudx=0+dydx

ln(y) = ln(9^x)ln(y)=ln(9x)

ln(y) = xln(9)ln(y)=xln(9)

1/ydy/dx = ln(9)1ydydx=ln(9)

dy/dx = ln(9)ydydx=ln(9)y

dy/dx = ln(9)9^xdydx=ln(9)9x

Substituting this into the equation for (du)/dxdudx

(du)/dx = ln(9)9^xdudx=ln(9)9x

Writing this so that we can substitute into the integral:

9^xdx = 1/ln(9)du9xdx=1ln(9)du

Substituting this and u into the integral:

1/ln(9)int(du)/u = 1/ln(9)ln(u) + C1ln(9)duu=1ln(9)ln(u)+C

Reverse the substitution for u:

int(3^(2x))/(1 + 3^(2x))dx = 1/ln(9)ln(1 + 9^x) + C32x1+32xdx=1ln(9)ln(1+9x)+C