How do you find the indefinite integral of sqrt(25 + x^2)?

1 Answer
Mar 26, 2018

1/2(xsqrt(25+x^2)+25lnabs(x+sqrt(25+x^2)))+C

Explanation:

Use trigonometric substitution.

Draw a triangle with an angle theta.

Label the opposite side as x and adjacent side as 5.

Now examine the triangle and notice that

tantheta=x/5

rArrx=5tantheta

rArrdx=5sec^2theta dtheta

By the Pythagorean Theorem, the hypotenuse of the triangle is:

sqrt(25+x^2)

So we can write

sectheta=sqrt(25+x^2)/5

rArrsqrt(25+x^2)=5sectheta

Let's now rewrite the integral in terms of theta

intsqrt(25+x^2)dxrArrint(5sectheta)(5sec^2theta dtheta)

rArr25int sec^3theta dtheta

Integrating sec^3theta can be tricky. There is a shortcut formula, but I'll do it the long way for teaching purposes.

Separate (sec^3theta dtheta) into (sectheta*sec^2theta dtheta) and use integration by parts.

Let:

u=sectheta
du=secthetatantheta dtheta

dv=sec^2theta dtheta
v=tantheta

Then:

rArrint sec^3theta dtheta=secthetatantheta-int tan^2thetasectheta dtheta

rArrint sec^3theta dtheta=secthetatantheta-int (sec^2theta-1)sectheta dtheta

rArrint sec^3theta dtheta=secthetatantheta-int (sec^3theta-sectheta)dtheta

rArr2int sec^3theta dtheta=secthetatantheta+int sectheta dtheta

rArr2int sec^3theta dtheta=secthetatantheta+lnabs(sectheta+tantheta)

rArrint sec^3theta dtheta=1/2(secthetatantheta+lnabs(sectheta+tantheta))+C

And let's not forget that our integral was multiplied by 25!

rArr25int sec^3theta dtheta=25/2(secthetatantheta+lnabs(sectheta+tantheta))+C

Now put everything back in terms of x

rArr25/2(sqrt(25+x^2)/5x/5+lnabs(sqrt(25+x^2)/5+x/5))+C

rArr1/2(xsqrt(25+x^2)+25lnabs((sqrt(25+x^2)+x)/5))+C

rArr1/2(xsqrt(25+x^2)+25lnabs(x+sqrt(25+x^2))-25ln5)+C

Then we can absorb the constant -(25ln5)/2 into C to get our final answer:

rArr1/2(xsqrt(25+x^2)+25lnabs(x+sqrt(25+x^2)))+C