Use trigonometric substitution.
Draw a triangle with an angle theta.
Label the opposite side as x and adjacent side as 5.
Now examine the triangle and notice that
tantheta=x/5
rArrx=5tantheta
rArrdx=5sec^2theta dtheta
By the Pythagorean Theorem, the hypotenuse of the triangle is:
sqrt(25+x^2)
So we can write
sectheta=sqrt(25+x^2)/5
rArrsqrt(25+x^2)=5sectheta
Let's now rewrite the integral in terms of theta
intsqrt(25+x^2)dxrArrint(5sectheta)(5sec^2theta dtheta)
rArr25int sec^3theta dtheta
Integrating sec^3theta can be tricky. There is a shortcut formula, but I'll do it the long way for teaching purposes.
Separate (sec^3theta dtheta) into (sectheta*sec^2theta dtheta) and use integration by parts.
Let:
u=sectheta
du=secthetatantheta dtheta
dv=sec^2theta dtheta
v=tantheta
Then:
rArrint sec^3theta dtheta=secthetatantheta-int tan^2thetasectheta dtheta
rArrint sec^3theta dtheta=secthetatantheta-int (sec^2theta-1)sectheta dtheta
rArrint sec^3theta dtheta=secthetatantheta-int (sec^3theta-sectheta)dtheta
rArr2int sec^3theta dtheta=secthetatantheta+int sectheta dtheta
rArr2int sec^3theta dtheta=secthetatantheta+lnabs(sectheta+tantheta)
rArrint sec^3theta dtheta=1/2(secthetatantheta+lnabs(sectheta+tantheta))+C
And let's not forget that our integral was multiplied by 25!
rArr25int sec^3theta dtheta=25/2(secthetatantheta+lnabs(sectheta+tantheta))+C
Now put everything back in terms of x
rArr25/2(sqrt(25+x^2)/5x/5+lnabs(sqrt(25+x^2)/5+x/5))+C
rArr1/2(xsqrt(25+x^2)+25lnabs((sqrt(25+x^2)+x)/5))+C
rArr1/2(xsqrt(25+x^2)+25lnabs(x+sqrt(25+x^2))-25ln5)+C
Then we can absorb the constant -(25ln5)/2 into C to get our final answer:
rArr1/2(xsqrt(25+x^2)+25lnabs(x+sqrt(25+x^2)))+C