Perform some simplification
5/sqrt(9x^2-16)=5/(4sqrt (((3/4x)^2)-1))5√9x2−16=54√((34x)2)−1
Let 3/4x=secu34x=secu, =>⇒, 3/4dx=secutanudu34dx=secutanudu
sqrt((3/4x)^2-1)=sqrt(sec^2u-1)=tanu√(34x)2−1=√sec2u−1=tanu
Therefore, the integral is
I=int(5dx)/(sqrt(9x^2-16))=5/4int(4/3secutanudu)/(tanu)I=∫5dx√9x2−16=54∫43secutanudutanu
=5/3intsecudu=53∫secudu
=5/3int(secu(secu+tanu)du)/(secu+tanu)=53∫secu(secu+tanu)dusecu+tanu
Let v=secu+tanuv=secu+tanu, =>⇒, dv=(sec^2u+secutanu)dudv=(sec2u+secutanu)du
Therefore,
I=5/3int(dv)/(v)I=53∫dvv
=5/3ln(v)=53ln(v)
=5/3ln(secu+tanu)=53ln(secu+tanu)
=5/3ln(|3/4x+sqrt((3/4x)^2-1)|)+C=53ln⎛⎝∣∣
∣∣34x+√(34x)2−1∣∣
∣∣⎞⎠+C