How do you find the integral of 5/[sqrt(9x^2-16)] dx59x216dx?

1 Answer
Apr 1, 2018

The answer is =5/3ln(|3/4x+sqrt((3/4x)^2-1)|)+C=53ln∣ ∣34x+(34x)21∣ ∣+C

Explanation:

Perform some simplification

5/sqrt(9x^2-16)=5/(4sqrt (((3/4x)^2)-1))59x216=54((34x)2)1

Let 3/4x=secu34x=secu, =>, 3/4dx=secutanudu34dx=secutanudu

sqrt((3/4x)^2-1)=sqrt(sec^2u-1)=tanu(34x)21=sec2u1=tanu

Therefore, the integral is

I=int(5dx)/(sqrt(9x^2-16))=5/4int(4/3secutanudu)/(tanu)I=5dx9x216=5443secutanudutanu

=5/3intsecudu=53secudu

=5/3int(secu(secu+tanu)du)/(secu+tanu)=53secu(secu+tanu)dusecu+tanu

Let v=secu+tanuv=secu+tanu, =>, dv=(sec^2u+secutanu)dudv=(sec2u+secutanu)du

Therefore,

I=5/3int(dv)/(v)I=53dvv

=5/3ln(v)=53ln(v)

=5/3ln(secu+tanu)=53ln(secu+tanu)

=5/3ln(|3/4x+sqrt((3/4x)^2-1)|)+C=53ln∣ ∣34x+(34x)21∣ ∣+C