How do you find the integral of (6t)/sqrt(36-t^2)? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer bp Jun 2, 2015 Consider 36 -t^2 =u, so that tdt=-1/2 du int (6tdt)/sqrt(36-t^2)=int -6/2 (du)/sqrtu = -3*2 u^(1/2) = -6sqrt(36-t^2) +C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1973 views around the world You can reuse this answer Creative Commons License