How do you find the Integral of dx/sqrt(x^2+16)? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Jim H Mar 30, 2015 int (dx)/ sqrt(x^2+16) dx = int 1/(4sqrt((x/4)^2+1)) dx =int 1/(sqrt((x/4)^2+1))( 1/4)dx u = x/4, du=1/4 dx and int 1/sqrt(u^2+1) du=sinh^(-1) u +C So int (dx)/ sqrt(x^2+16) dx = sinh^(-1) (x/4) +C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 6085 views around the world You can reuse this answer Creative Commons License