How do you find the integral of dx/sqrt(x^2-4)?

1 Answer
Mar 15, 2018

ln|((x/2)+sqrt((x^2/2-1)))|+c

Explanation:

int1/(sqrt(x^2-4))dx

we can either use a trig substitution

using tan^2theta=sec^2theta-1

x=2secu=>dx=2secutanudu

int1/(sqrt(x^2-4))dx=int1/((sqrt(4sec^2u-4)))(2secutanudu)

=int(cancel(2)secucancel(tanu))/(cancel(2sqrt(sec^2u-1)))du

=intsecudu

this isa standard integral

=ln|(secu+tanu)|+c

substituting back

=ln|((x/2)+sqrt((x^2/2-1)))|+c

which can be simplified as required