How do you find the integral of dx/ sqrt(x^2 - a^2)?

1 Answer
Jul 22, 2015

With this general case, notice how sqrt(x^2 - a^2) prop sqrt(sec^2theta - 1). So, we can use the following substitution:

x = asectheta
dx = asecthetatanthetad theta
sqrt(x^2 - a^2) = sqrt(a^2sec^2theta - a^2) = atantheta

Thus, we have:

= int 1/(cancel(atantheta))*cancel(a)secthetacancel(tantheta)d theta

= int secthetad theta

Then just a little trick:
= int sectheta((sectheta + tantheta)/(sectheta + tantheta))d theta

= int (sec^2theta + secthetatantheta)/(sectheta + tantheta)d theta

Now, let:
u = sectheta + tantheta
du = secthetatantheta + sec^2thetad theta

Therefore:

= int1/udu

= ln|u|

= ln|sectheta + tantheta|

Recall that:
sectheta = x/a
tantheta = sqrt(x^2 - a^2)/a

Thus we have:

= color(green)(ln|x/a + sqrt(x^2 - a^2)/a| + C)

...which is perfectly acceptable. But, you could simplify this more and be a little sneaky.

= ln|(1/a)[x + sqrt(x^2 - a^2)]| + C

= ln|x + sqrt(x^2 - a^2)| + ln|1/a| + C

but since a is a constant... it gets embedded into C.

= color(blue)(ln|x + sqrt(x^2 - a^2)| + C)

So if you see Wolfram Alpha give you this answer, that's why.