How do you find the integral of e^(2x) sqrt(1 + e^(2x)) dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer bp Jun 9, 2015 1/3 (1+e^(2x))^(3/2) +C Explanation: Let u= 1+e^(2x), du= 2e^(2x)dx Accordingly, int e^(2x) sqrt(1+e^(2x) dx= 1/2int u^(1/2) du =1/3 u^(3/2) +C =1/3 (1+e^(2x))^(3/2) +C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 5213 views around the world You can reuse this answer Creative Commons License