How do you find the integral of int 1/(3+(x-2)^2? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Ratnaker Mehta Jul 8, 2017 1/sqrt3*arc tan((x-2)/sqrt3)+C. Explanation: Let, I=int1/(3+(x-2)^2)dx. Knowing that, int1/(t^2+a^2)dt=1/a*arc tan(t/a)+c, we take substn. (x-2)=t rArr dx=dt. :. I=int1/(t^2+sqrt3^2)dt, =1/sqrt3*arc tan (t/sqrt3), rArr I=1/sqrt3*arc tan((x-2)/sqrt3)+C. Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1633 views around the world You can reuse this answer Creative Commons License