Substitute:
x =1/2 sintx=12sint
dx = 1/2costdtdx=12costdt
with t in (-pi/2,pi/2)t∈(−π2,π2) as the integrand is defined only for abs (2x) < 1|2x|<1.
Then:
int 3/sqrt(1-4x^2)dx = 3/2 int (costdt)/sqrt(1-4(1/2sint)^2) ∫3√1−4x2dx=32∫costdt√1−4(12sint)2
int 3/sqrt(1-4x^2)dx = 3/2 int (costdt)/sqrt(1-sin^2t) ∫3√1−4x2dx=32∫costdt√1−sin2t
Now, for t in (-pi/2,pi/2)t∈(−π2,π2):
sqrt(1-sin^2t) = cost√1−sin2t=cost
so:
int 3/sqrt(1-4x^2)dx = 3/2 int (costdt)/cost∫3√1−4x2dx=32∫costdtcost
int 3/sqrt(1-4x^2)dx = 3/2 intdt∫3√1−4x2dx=32∫dt
int 3/sqrt(1-4x^2)dx = (3t)/2 + C∫3√1−4x2dx=3t2+C
and undoing the substitution:
int 3/sqrt(1-4x^2)dx = 3/2 arcsin(2x) + C∫3√1−4x2dx=32arcsin(2x)+C