How do you find the integral of int 3/sqrt(1-4x^2)dx314x2dx?

1 Answer
Apr 1, 2018

int 3/sqrt(1-4x^2)dx = 3/2 arcsin(2x) + C314x2dx=32arcsin(2x)+C

Explanation:

Substitute:

x =1/2 sintx=12sint

dx = 1/2costdtdx=12costdt

with t in (-pi/2,pi/2)t(π2,π2) as the integrand is defined only for abs (2x) < 1|2x|<1.

Then:

int 3/sqrt(1-4x^2)dx = 3/2 int (costdt)/sqrt(1-4(1/2sint)^2) 314x2dx=32costdt14(12sint)2

int 3/sqrt(1-4x^2)dx = 3/2 int (costdt)/sqrt(1-sin^2t) 314x2dx=32costdt1sin2t

Now, for t in (-pi/2,pi/2)t(π2,π2):

sqrt(1-sin^2t) = cost1sin2t=cost

so:

int 3/sqrt(1-4x^2)dx = 3/2 int (costdt)/cost314x2dx=32costdtcost

int 3/sqrt(1-4x^2)dx = 3/2 intdt314x2dx=32dt

int 3/sqrt(1-4x^2)dx = (3t)/2 + C314x2dx=3t2+C

and undoing the substitution:

int 3/sqrt(1-4x^2)dx = 3/2 arcsin(2x) + C314x2dx=32arcsin(2x)+C