How do you find the integral of int 4/(1+9x^2)dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer sjc Mar 18, 2018 4/3tan^(-1)(3x)+c Explanation: int4/(1+9x^2)dx substitute 9x^2=tan^2u =>3x=tanu--(1) =>3dx=sec^2udu int4/(1+9x^2)dx=4int1/(1+tan^2u)xx(sec^2udu)/3 =4/3intcancel((sec^2u)/(1+tan^2u))du I=4/3intdu=4/3u+c (1)rarru=tan^(-1)(3x) :.I=4/3tan^(-1)(3x)+c Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 3706 views around the world You can reuse this answer Creative Commons License