How do you find the integral of int t/(t^4+16)?

1 Answer
Feb 9, 2017

The answer is =1/8arctan(t^2/4)+C

Explanation:

We perform this integral by substitution

Let u=t^2/4

du=2/4tdt=t/2dt

t^4+16=16u^2+16=16(u^2+1)

Therefore,

int(tdt)/(t^4+16)=int(2du)/(16(u^2+1))

=1/8int(du)/(u^2+1)

Let u=tantheta

du=sec^2theta d theta

1+tan^2theta=sec^2 theta

So,

1/8int(du)/(u^2+1)=1/8int(sec^2 theta d theta)/(sec ^2 theta)

=1/8intd theta=theta/8

=1/8arctan(u)

Therefore,

int(tdt)/(t^4+16)=1/8arctan(t^2/4)+C