Substitute:
x=tant
dx = (dt)/cos^2t
intx^3/(1+x^2)dx = int tan^3t/(1+tan^2t) dt/cos^2t
Use the trigonometric identity:
1+tan^2 t = 1/cos^2t
intx^3/(1+x^2)dx = int tan^3t/( 1/cos^2t) dt/cos^2t = int tan^3tdt
Using the same identity again:
int tan^3tdt = int tant tan^2t dt = int tant (1/cos^2t -1)dt =
= int tant d(tant) - int tant dt =1/2 tan^2 t - int sint /cost dt =
= 1/2tan^2t + int (d(cost))/cost = 1/2tan^2t + ln |cos t|
To substitute back x, we have that:
tant = x
cost= +-sqrt(1 /(1+tan^2t))= +-1/sqrt(1+x^2)
So:
intx^3/(1+x^2)dx = 1/2x^2-lnsqrt(1+x^2)