How do you find the integral of log_8 (2x+1) dxlog8(2x+1)dx?

1 Answer
Apr 15, 2015

1/ln81ln8 [ x ln(2x+1) -x + 1/212 ln(2x+1)] +C

To start with, change this to natural log. It would be 1/ln81ln8 ln(2x+1)

Now integrate it by parts assuming 1 as the other function multiplied to ln(2x+1).

The integral would be 1/ln81ln8[ln(2x+1) x - int 2/(2x+1)22x+1xdx]

= 1/ln81ln8 [x ln(2x+1) - int(2x+1-1)/(2x+1)2x+112x+1 dx

= 1/ln81ln8 [ x ln(2x+1) -int dx +int 1/(2x+1)12x+1 dx

=1/ln81ln8 [ x ln(2x+1) -x + 1/212 ln(2x+1)] +C