How do you find the integral of (sqrt(1+x^2)/x)?

1 Answer
Jul 1, 2015

The answer is [1/2ln(1/sqrt(x^2+1)-1)+sqrt(x^2+1)-1/2ln(1/sqrt(x^2+1)+1)]+C

Explanation:

let's x = tan(u)

dx = 1/cos^2(u)du

the integral become :

int (1/cos(u))/tan(u)*1/cos^2(u) du

int 1/tan(u)*1/cos^3(u) du

int 1/(sin(u)cos^2(u)

int sin(u)/sin(u)^2cos^2(u)

t = cos(u)

dt = -sin(u)

-int1/((1-t^2)t^2)

-int1/((1+t)(1-t)t^2

with partial fraction we get

-int-1/(2 (t-1)) + 1/t^2 + 1/(2 (1 + t))

[1/2ln(t-1)+1/t-1/2ln(t+1)]+C

since t = cos(u)

[1/2ln(cos(u)-1)+1/cos(u)-1/2ln(cos(u)+1)]+C

remember x = tan(u)

so arctan(x) = u

cos(arctan(x)) = cos(u)

but cos(arctan(x)) = 1/sqrt(x^2+1)

FINALLY :

[1/2ln(1/sqrt(x^2+1)-1)+sqrt(x^2+1)-1/2ln(1/sqrt(x^2+1)+1)]+C