let's x = tan(u)
dx = 1/cos^2(u)du
the integral become :
int (1/cos(u))/tan(u)*1/cos^2(u) du
int 1/tan(u)*1/cos^3(u) du
int 1/(sin(u)cos^2(u)
int sin(u)/sin(u)^2cos^2(u)
t = cos(u)
dt = -sin(u)
-int1/((1-t^2)t^2)
-int1/((1+t)(1-t)t^2
with partial fraction we get
-int-1/(2 (t-1)) + 1/t^2 + 1/(2 (1 + t))
[1/2ln(t-1)+1/t-1/2ln(t+1)]+C
since t = cos(u)
[1/2ln(cos(u)-1)+1/cos(u)-1/2ln(cos(u)+1)]+C
remember x = tan(u)
so arctan(x) = u
cos(arctan(x)) = cos(u)
but cos(arctan(x)) = 1/sqrt(x^2+1)
FINALLY :
[1/2ln(1/sqrt(x^2+1)-1)+sqrt(x^2+1)-1/2ln(1/sqrt(x^2+1)+1)]+C