II^(nd) MethodIIndMethod
Here,
I=sqrt(x^2+9) dx...to(1)
I=intsqrt(x^2+9)*1dx
"Using "color(blue)"Integration by Parts :"
color(blue)(intu*vdx=uintvdx-int(u'intvdx)dx
Let u=sqrt(x^2+9) and v=1
=>u'=(2x)/(2sqrt(x^2+9))=x/sqrt(x^2+9) and intvdx=x+c
So,
I=sqrt(x^2+9)*x-intx/sqrt(x^2+9)*xdx
I=xsqrt(x^2+9)-intx^2/sqrt(x^2+9)dx
I=xsqrt(x^2+9)-int((x^2+9)-9)/sqrt(x^2+9)dx
I=xsqrt(x^2+9)-int(x^2+9)/sqrt(x^2+9)dx+int9/sqrt(x^2+9)dx
I=xsqrt(x^2+9)-intsqrt(x^2+9)dx+9int1/sqrt(x^2+3^2)dx
I=xsqrt(x^2+9)-I+9ln|x+sqrt(x^2+3^2)|+Ctofrom (1)
I+I=xsqrt(x^2+9)+9ln|x+sqrt(x^2+9)|+C
2I=xsqrt(x^2+9)+9ln|x+sqrt(x^2+9)|+C
I=x/2sqrt(x^2+9)+9/2ln|x+sqrt(x^2+9)|+C