We can solve above question "without using"color(red)" Result(1)."
Please see below.
I=intsqrt(x^2-49)dx...to(A)
=int1*sqrt(x^2-49)dx
"Using "color(blue)"Integration by Parts"
int(u*v)dx=uintvdx-int(u'intvdx)dx
u=sqrt(x^2-49) and v=1
=>u'=1/(2sqrt(x^2-49))2x=x/sqrt(x^2-49)andintvdx=x
So,
I=sqrt(x^2-49)*x-intx/sqrt(x^2-49)*xdx
=x*sqrt(x^2-49)-intx^2/sqrt(x^2-49)dx
=xsqrt(x^2-49)-int((x^2-49)+49)/sqrt(x^2-49)
I=xsqrt(x^2-49)-intsqrt(x^2-49)dx-int49/sqrt(x^2-49)dx
I=xsqrt(x^2-49)-I-49int1/sqrt(x^2-7^2)dx...toFrom(A)
I+I=xsqrt(x^2-49)-49ln|x+sqrt(x^2-7^2)|+c
2I=xsqrt(x^2-49)-49ln |x+sqrt(x^2-49)|+c
=>I=x/2sqrt(x^2-49)-49/2ln|x+sqrt(x^2-49)|+c