How do you find the integral of sqrt(x²-49)dx?

1 Answer
Apr 22, 2018

I=sqrt(x^2-7^2)dx
We know that,
color(red)((1)intsqrt(x^2-a^2)dx=x/2sqrt(x^2-a^2)-a^2/2ln|x+sqrt(x^2-a^2)|+c,
put x=7
I=x/2sqrt(x^2-49)-49/2ln|x+sqrt(x^2-49)|+c

Explanation:

We can solve above question "without using"color(red)" Result(1)."

Please see below.

I=intsqrt(x^2-49)dx...to(A)

=int1*sqrt(x^2-49)dx

"Using "color(blue)"Integration by Parts"

int(u*v)dx=uintvdx-int(u'intvdx)dx

u=sqrt(x^2-49) and v=1

=>u'=1/(2sqrt(x^2-49))2x=x/sqrt(x^2-49)andintvdx=x

So,

I=sqrt(x^2-49)*x-intx/sqrt(x^2-49)*xdx

=x*sqrt(x^2-49)-intx^2/sqrt(x^2-49)dx

=xsqrt(x^2-49)-int((x^2-49)+49)/sqrt(x^2-49)

I=xsqrt(x^2-49)-intsqrt(x^2-49)dx-int49/sqrt(x^2-49)dx

I=xsqrt(x^2-49)-I-49int1/sqrt(x^2-7^2)dx...toFrom(A)

I+I=xsqrt(x^2-49)-49ln|x+sqrt(x^2-7^2)|+c

2I=xsqrt(x^2-49)-49ln |x+sqrt(x^2-49)|+c

=>I=x/2sqrt(x^2-49)-49/2ln|x+sqrt(x^2-49)|+c