How do you find the integral of x^2/sqrt(4x-x^2) dx?
1 Answer
Mar 8, 2018
Use the substitution
Explanation:
Let
Complete the square in the square root:
I=intx^2/sqrt(4-(x-2)^2)dx
Apply the substitution
I=int(2sintheta+2)^2d theta
Rearrange:
I=int(4sin^2theta+8sintheta+4)d theta
Apply the identity
I=int(6+8sintheta-2cos2theta)d theta
Integrate term by term:
I=6theta-8costheta-sin2theta+C
Apply the identity
I=6theta-8costheta-2sinthetacostheta+C
Reverse the substitution:
I=6sin^(-1)((x-2)/2)-1/2(x+6)sqrt(4x-x^2)