How do you find the integral of x^2/sqrt(4x-x^2) dx?

1 Answer
Mar 8, 2018

Use the substitution x-2=2sintheta.

Explanation:

Let I=intx^2/sqrt(4x-x^2)dx

Complete the square in the square root:

I=intx^2/sqrt(4-(x-2)^2)dx

Apply the substitution x-2=2sintheta:

I=int(2sintheta+2)^2d theta

Rearrange:

I=int(4sin^2theta+8sintheta+4)d theta

Apply the identity cos2theta=1-2sin^2theta:

I=int(6+8sintheta-2cos2theta)d theta

Integrate term by term:

I=6theta-8costheta-sin2theta+C

Apply the identity sin2theta=2sinthetacostheta:

I=6theta-8costheta-2sinthetacostheta+C

Reverse the substitution:

I=6sin^(-1)((x-2)/2)-1/2(x+6)sqrt(4x-x^2)