How do you find the length of the curve for y= ln(1-x²) for (0, 1/2)?

1 Answer
Aug 16, 2017

The formula for the arc length of the curve y on the interval [a,b] is given by:

s=int_a^bsqrt(1+(dy/dx)^2)dx

Here, where y=ln(1-x^2), then dy/dx=(-2x)/(1-x^2)=(2x)/(x^2-1).

Thus, the arc length in question is:

s=int_0^(1//2)sqrt(1+((2x)/(x^2-1))^2)dx

s=int_0^(1//2)sqrt(((x^2-1)^2+(2x)^2)/(x^2-1)^2)dx

s=int_0^(1//2)sqrt(x^4-2x^2+1+4x^2)/(x^2-1)dx

s=int_0^(1//2)sqrt(x^4+2x^2+1)/(x^2-1)dx

Note this is factorable:

s=int_0^(1//2)sqrt((x^2+1)^2)/(x^2-1)dx

s=int_0^(1//2)(x^2+1)/(x^2-1)dx

Rewriting:

s=int_0^(1//2)(x^2-1+2)/(x^2-1)dx

s=int_0^(1//2)(1+2/(x^2-1))dx

Perform partial fractions on the second piece:

2/(x^2-1)=A/(x-1)+B/(x+1)

2=A(x+1)+B(x-1)

Letting x=1 reveals that

2=2A" "=>" "A=1

And letting x=-1 shows that

2=-2B" "=>" "B=-1

So

2/(x^2-1)=1/(x-1)-1/(x+1)

Then

s=int_0^(1//2)(1+1/(x-1)-1/(x+1))dx

Which are all easily integrateable:

s=[x+lnabs(x-1)-lnabs(x+1)]_0^(1//2)

s=[x+lnabs((x-1)/(x+1))]_0^(1//2)

s=(1/2+lnabs((1/2-1)/(1/2+1)))-(0+lnabs((0-1)/(0+1)))

s=1/2+lnabs((-1/2)/(3/2))+lnabs(-1)

s=1/2+ln(1/3)

Or

s=1/2-ln3