How do you find the length of the curve for y= ln(1-x²) for (0, 1/2)?
1 Answer
The formula for the arc length of the curve
s=int_a^bsqrt(1+(dy/dx)^2)dx
Here, where
Thus, the arc length in question is:
s=int_0^(1//2)sqrt(1+((2x)/(x^2-1))^2)dx
s=int_0^(1//2)sqrt(((x^2-1)^2+(2x)^2)/(x^2-1)^2)dx
s=int_0^(1//2)sqrt(x^4-2x^2+1+4x^2)/(x^2-1)dx
s=int_0^(1//2)sqrt(x^4+2x^2+1)/(x^2-1)dx
Note this is factorable:
s=int_0^(1//2)sqrt((x^2+1)^2)/(x^2-1)dx
s=int_0^(1//2)(x^2+1)/(x^2-1)dx
Rewriting:
s=int_0^(1//2)(x^2-1+2)/(x^2-1)dx
s=int_0^(1//2)(1+2/(x^2-1))dx
Perform partial fractions on the second piece:
2/(x^2-1)=A/(x-1)+B/(x+1)
2=A(x+1)+B(x-1)
Letting
2=2A" "=>" "A=1
And letting
2=-2B" "=>" "B=-1
So
2/(x^2-1)=1/(x-1)-1/(x+1)
Then
s=int_0^(1//2)(1+1/(x-1)-1/(x+1))dx
Which are all easily integrateable:
s=[x+lnabs(x-1)-lnabs(x+1)]_0^(1//2)
s=[x+lnabs((x-1)/(x+1))]_0^(1//2)
s=(1/2+lnabs((1/2-1)/(1/2+1)))-(0+lnabs((0-1)/(0+1)))
s=1/2+lnabs((-1/2)/(3/2))+lnabs(-1)
s=1/2+ln(1/3)
Or
s=1/2-ln3